Factorization of the coarse index pairing via the Paschke transformation
Establish whether, for general uniform bornological coarse spaces X and big families 𝒴, there exists a natural analytic coarse symbol pairing K(𝒴) × K^{an}(X) → K^{an}(𝒴) that factors the coarse symbol pairing through the Paschke transformation p_X: K^X(X) → K^{an}(X) and renders the corresponding comparison square commutative.
References
Similarly it is not clear whether in general the coarse index pairing has a factorization over the Paschke transformation $p_{X}:K{X}(X)\to K{an}(X)$ from frefwrfregwreg, i.e., whether we can construct a pairing $ K(\mathcal Y)\times K{an}(X)\stackrel{-\cap{an \sigma}-}{\to} K{an}(\mathcal{Y})$ rendering the obvious comparison square commutative.
frefwrfregwreg:
                — Coronas and Callias type operators in coarse geometry
                
                (2411.01646 - Bunke et al., 3 Nov 2024) in Remark in Subsection 'The coarse symbol pairing' (following Proposition erokgpwergrwefwerfwerfwer)