Double variational principle conjecture for mean dimension with potential
Establish the double variational principle for mean dimension with potential: for any continuous action T: R^k × X → X on a compact metrizable space X and any continuous potential function φ: X → R, construct a metric d on X compatible with the topology such that mdim(X, T, φ) = sup_{μ ∈ M^T(X)} [(X, T, d, μ) + ∫_X φ dμ] = mdim(X, T, d, φ).
References
Indeed, we conjecture that for any continuous action T\colon \mathbb{R}k\times \mathcal{X}\to \mathcal{X} on a compact metrizable space \mathcal{X} and for any continuous function \varphi\colon \mathcal{X}\to \mathbb{R} there exists a metric \mathbf{d} on \mathcal{X} compatible with the given topology and satisfying \begin{equation*} \begin{split} mdim\left(\mathcal{X}, T, \varphi\right) &= \sup_{\mu \in \mathscr{M}T(\mathcal{X})} \left(\left(\mathcal{X}, T, \mathbf{d}, \mu\right) + \int_{\mathcal{X}\varphi\, d\mu\right) \ & = \sup_{\mu \in \mathscr{M}T(\mathcal{X})} \left(\left(\mathcal{X}, T, \mathbf{d}, \mu\right) + \int_{\mathcal{X}\varphi\, d\mu\right) = mdim\left(\mathcal{X}, T, \mathbf{d}, \varphi\right). \end{split} \end{equation*} This is more satisfactory (if it is true).