Is the vanishing Ext_R^n(Hom_R(L,N),R)=0 automatic under the symmetry setup?
Ascertain whether the following implication holds without additional assumptions: for a Cohen–Macaulay local ring R and finitely generated modules M and N with PR(M,R) < ∞, PR(N,R) < ∞, b_M < ∞, and L an MCM syzygy of M, if PR(M,N) < ∞ then Ext_R^n(Hom_R(L,N), R) = 0 for all sufficiently large n.
References
Question 5.5. Let R be a CM local ring and let M and N be finitely generated modules with PR(M, R) < c, bM < , PR(N, R) < , and L an MCM syzygy of M. If PR(M, N) < 0, do we have ExtR (HomR(L, N), R) = 0 for n >> 0?
                — A Study on Auslander Bounds
                
                (2402.06130 - Levins, 9 Feb 2024) in Question 5.5