Papers
Topics
Authors
Recent
Search
2000 character limit reached

EWSJF: An Adaptive Scheduler with Hybrid Partitioning for Mixed-Workload LLM Inference

Published 29 Jan 2026 in cs.DC and cs.AI | (2601.21758v1)

Abstract: Serving LLMs under mixed workloads--short, latency-sensitive interactive queries alongside long, throughput-oriented batch requests--poses a fundamental scheduling challenge. Standard First-Come, First-Served (FCFS) policies suffer from severe head-of-line blocking, leading to high tail latency and underutilized hardware. We introduce EWSJF (Effective Workload-based Shortest Job First), an adaptive request-level scheduler that learns workload structure in real time to jointly improve fairness and throughput. EWSJF operates upstream of execution-level schedulers and integrates four components: (1) Refine-and-Prune, an unsupervised partitioning algorithm that discovers performance-homogeneous request groups; (2) Dynamic Queue Routing for assigning requests to these groups; (3) Density-Weighted Scoring, a context-aware prioritization function balancing urgency and fairness; and (4) Bayesian Meta-Optimization, which continuously tunes scoring and partitioning parameters based on live performance feedback. Implemented in vLLM, EWSJF improves end-to-end throughput by over 30% and reduces average Time-To-First-Token for short requests by up to 4x compared to FCFS. These results demonstrate that adaptive, learning-based request scheduling is a critical missing layer for efficient and responsive LLM serving. Implementation available at https://anonymous.4open.science/r/vllm_0110-32D8.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.