Papers
Topics
Authors
Recent
2000 character limit reached

Vision-Language-Model-Guided Differentiable Ray Tracing for Fast and Accurate Multi-Material RF Parameter Estimation

Published 26 Jan 2026 in cs.CV and cs.NI | (2601.18242v1)

Abstract: Accurate radio-frequency (RF) material parameters are essential for electromagnetic digital twins in 6G systems, yet gradient-based inverse ray tracing (RT) remains sensitive to initialization and costly under limited measurements. This paper proposes a vision-language-model (VLM) guided framework that accelerates and stabilizes multi-material parameter estimation in a differentiable RT (DRT) engine. A VLM parses scene images to infer material categories and maps them to quantitative priors via an ITU-R material table, yielding informed conductivity initializations. The VLM further selects informative transmitter/receiver placements that promote diverse, material-discriminative paths. Starting from these priors, the DRT performs gradient-based refinement using measured received signal strengths. Experiments in NVIDIA Sionna on indoor scenes show 2-4$\times$ faster convergence and 10-100$\times$ lower final parameter error compared with uniform or random initialization and random placement baselines, achieving sub-0.1\% mean relative error with only a few receivers. Complexity analyses indicate per-iteration time scales near-linearly with the number of materials and measurement setups, while VLM-guided placement reduces the measurements required for accurate recovery. Ablations over RT depth and ray counts confirm further accuracy gains without significant per-iteration overhead. Results demonstrate that semantic priors from VLMs effectively guide physics-based optimization for fast and reliable RF material estimation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.