Papers
Topics
Authors
Recent
2000 character limit reached

Graph Attention Networks with Physical Constraints for Anomaly Detection

Published 18 Jan 2026 in cs.LG and cs.CR | (2601.12426v1)

Abstract: Water distribution systems (WDSs) face increasing cyber-physical risks, which make reliable anomaly detection essential. Many data-driven models ignore network topology and are hard to interpret, while model-based ones depend strongly on parameter accuracy. This work proposes a hydraulic-aware graph attention network using normalized conservation law violations as features. It combines mass and energy balance residuals with graph attention and bidirectional LSTM to learn spatio-temporal patterns. A multi-scale module aggregates detection scores from node to network level. On the BATADAL dataset, it reaches $F1=0.979$, showing $3.3$pp gain and high robustness under $15\%$ parameter noise.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.