Papers
Topics
Authors
Recent
2000 character limit reached

Bandwidth-Efficient Adaptive Mixture-of-Experts via Low-Rank Compensation (2512.17073v1)

Published 18 Dec 2025 in cs.LG

Abstract: Mixture-of-Experts (MoE) models scale capacity via sparse activation but stress memory and bandwidth. Offloading alleviates GPU memory by fetching experts on demand, yet token-level routing causes irregular transfers that make inference I/O-bound. Static uniform quantization reduces traffic but degrades accuracy under aggressive compression by ignoring expert heterogeneity. We present Bandwidth-Efficient Adaptive Mixture-of-Experts via Low-Rank Compensation, which performs router-guided precision restoration using precomputed low-rank compensators. At inference time, our method transfers compact low-rank factors with Top-n (n<k) experts per token and applies compensation to them, keeping others low-bit. Integrated with offloading on GPU and GPU-NDP systems, our method delivers a superior bandwidth-accuracy trade-off and improved throughput.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.