Papers
Topics
Authors
Recent
2000 character limit reached

The Perceptual Observatory Characterizing Robustness and Grounding in MLLMs

Published 17 Dec 2025 in cs.CV | (2512.15949v1)

Abstract: Recent advances in multimodal LLMs (MLLMs) have yielded increasingly powerful models, yet their perceptual capacities remain poorly characterized. In practice, most model families scale language component while reusing nearly identical vision encoders (e.g., Qwen2.5-VL 3B/7B/72B), which raises pivotal concerns about whether progress reflects genuine visual grounding or reliance on internet-scale textual world knowledge. Existing evaluation methods emphasize end-task accuracy, overlooking robustness, attribution fidelity, and reasoning under controlled perturbations. We present The Perceptual Observatory, a framework that characterizes MLLMs across verticals like: (i) simple vision tasks, such as face matching and text-in-vision comprehension capabilities; (ii) local-to-global understanding, encompassing image matching, grid pointing game, and attribute localization, which tests general visual grounding. Each vertical is instantiated with ground-truth datasets of faces and words, systematically perturbed through pixel-based augmentations and diffusion-based stylized illusions. The Perceptual Observatory moves beyond leaderboard accuracy to yield insights into how MLLMs preserve perceptual grounding and relational structure under perturbations, providing a principled foundation for analyzing strengths and weaknesses of current and future models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.