Papers
Topics
Authors
Recent
2000 character limit reached

Epistemic diversity across language models mitigates knowledge collapse (2512.15011v1)

Published 17 Dec 2025 in cs.LG, cs.AI, cs.CY, and cs.MA

Abstract: The growing use of AI raises concerns of knowledge collapse, i.e., a reduction to the most dominant and central set of ideas. Prior work has demonstrated single-model collapse, defined as performance decay in an AI model trained on its own output. Inspired by ecology, we ask whether AI ecosystem diversity, that is, diversity among models, can mitigate such a collapse. We build on the single-model approach but focus on ecosystems of models trained on their collective output. To study the effect of diversity on model performance, we segment the training data across LLMs and evaluate the resulting ecosystems over ten, self-training iterations. We find that increased epistemic diversity mitigates collapse, but, interestingly, only up to an optimal level. Our results suggest that an ecosystem containing only a few diverse models fails to express the rich mixture of the full, true distribution, resulting in rapid performance decay. Yet distributing the data across too many models reduces each model's approximation capacity on the true distribution, leading to poor performance already in the first iteration step. In the context of AI monoculture, our results suggest the need to monitor diversity across AI systems and to develop policies that incentivize more domain- and community-specific models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.