Papers
Topics
Authors
Recent
2000 character limit reached

LPD: Learnable Prototypes with Diversity Regularization for Weakly Supervised Histopathology Segmentation

Published 5 Dec 2025 in cs.CV | (2512.05922v1)

Abstract: Weakly supervised semantic segmentation (WSSS) in histopathology reduces pixel-level labeling by learning from image-level labels, but it is hindered by inter-class homogeneity, intra-class heterogeneity, and CAM-induced region shrinkage (global pooling-based class activation maps whose activations highlight only the most distinctive areas and miss nearby class regions). Recent works address these challenges by constructing a clustering prototype bank and then refining masks in a separate stage; however, such two-stage pipelines are costly, sensitive to hyperparameters, and decouple prototype discovery from segmentation learning, limiting their effectiveness and efficiency. We propose a cluster-free, one-stage learnable-prototype framework with diversity regularization to enhance morphological intra-class heterogeneity coverage. Our approach achieves state-of-the-art (SOTA) performance on BCSS-WSSS, outperforming prior methods in mIoU and mDice. Qualitative segmentation maps show sharper boundaries and fewer mislabels, and activation heatmaps further reveal that, compared with clustering-based prototypes, our learnable prototypes cover more diverse and complementary regions within each class, providing consistent qualitative evidence for their effectiveness.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.