Papers
Topics
Authors
Recent
2000 character limit reached

Iterative Tilting for Diffusion Fine-Tuning

Published 2 Dec 2025 in stat.ML and cs.LG | (2512.03234v1)

Abstract: We introduce iterative tilting, a gradient-free method for fine-tuning diffusion models toward reward-tilted distributions. The method decomposes a large reward tilt $\exp(λr)$ into $N$ sequential smaller tilts, each admitting a tractable score update via first-order Taylor expansion. This requires only forward evaluations of the reward function and avoids backpropagating through sampling chains. We validate on a two-dimensional Gaussian mixture with linear reward, where the exact tilted distribution is available in closed form.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.