Papers
Topics
Authors
Recent
2000 character limit reached

EGGS: Exchangeable 2D/3D Gaussian Splatting for Geometry-Appearance Balanced Novel View Synthesis

Published 2 Dec 2025 in cs.CV and cs.AI | (2512.02932v1)

Abstract: Novel view synthesis (NVS) is crucial in computer vision and graphics, with wide applications in AR, VR, and autonomous driving. While 3D Gaussian Splatting (3DGS) enables real-time rendering with high appearance fidelity, it suffers from multi-view inconsistencies, limiting geometric accuracy. In contrast, 2D Gaussian Splatting (2DGS) enforces multi-view consistency but compromises texture details. To address these limitations, we propose Exchangeable Gaussian Splatting (EGGS), a hybrid representation that integrates 2D and 3D Gaussians to balance appearance and geometry. To achieve this, we introduce Hybrid Gaussian Rasterization for unified rendering, Adaptive Type Exchange for dynamic adaptation between 2D and 3D Gaussians, and Frequency-Decoupled Optimization that effectively exploits the strengths of each type of Gaussian representation. Our CUDA-accelerated implementation ensures efficient training and inference. Extensive experiments demonstrate that EGGS outperforms existing methods in rendering quality, geometric accuracy, and efficiency, providing a practical solution for high-quality NVS.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.