Papers
Topics
Authors
Recent
2000 character limit reached

Spatially-Grounded Document Retrieval via Patch-to-Region Relevance Propagation (2512.02660v1)

Published 2 Dec 2025 in cs.CV and cs.IR

Abstract: Vision-LLMs (VLMs) like ColPali achieve state-of-the-art document retrieval by embedding pages as images and computing fine-grained similarity between query tokens and visual patches. However, they return entire pages rather than specific regions, limiting utility for retrieval-augmented generation (RAG) where precise context is paramount. Conversely, OCR-based systems extract structured text with bounding box coordinates but lack semantic grounding for relevance assessment. We propose a hybrid architecture that unifies these paradigms: using ColPali's patch-level similarity scores as spatial relevance filters over OCR-extracted regions. We formalize the coordinate mapping between vision transformer patch grids and OCR bounding boxes, introduce intersection metrics for relevance propagation, and establish theoretical bounds on retrieval precision. Our approach operates at inference time without additional training. We release Snappy, an open-source implementation demonstrating practical applicability, with empirical evaluation ongoing.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.