Papers
Topics
Authors
Recent
2000 character limit reached

SpecPV: Improving Self-Speculative Decoding for Long-Context Generation via Partial Verification (2512.02337v1)

Published 2 Dec 2025 in cs.LG

Abstract: Growing demands from tasks like code generation, deep reasoning, and long-document understanding have made long-context generation a crucial capability for LLMs. Speculative decoding is one of the most direct and effective approaches for accelerating generation. It follows a draft-verify paradigm, where a lightweight draft model proposes several candidate tokens and the target model verifies them. However, we find that as the context length grows, verification becomes the dominant bottleneck. To further accelerate speculative decoding in long-context generation, we introduce SpecPV, a self-speculative decoding approach that performs fast verification using partial key-value states (KV) and periodically applies full verification to eliminate accumulated errors. We validate SpecPV across multiple long-context benchmarks and models, including LLaMA-3.1-8B-Instruct and Qwen3-series. Experimental results show that SpecPV achieves up to 6x decoding speedup over standard autoregressive decoding with minor degradation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.