Papers
Topics
Authors
Recent
2000 character limit reached

Partially Equivariant Reinforcement Learning in Symmetry-Breaking Environments (2512.00915v1)

Published 30 Nov 2025 in cs.LG and cs.RO

Abstract: Group symmetries provide a powerful inductive bias for reinforcement learning (RL), enabling efficient generalization across symmetric states and actions via group-invariant Markov Decision Processes (MDPs). However, real-world environments almost never realize fully group-invariant MDPs; dynamics, actuation limits, and reward design usually break symmetries, often only locally. Under group-invariant Bellman backups for such cases, local symmetry-breaking introduces errors that propagate across the entire state-action space, resulting in global value estimation errors. To address this, we introduce Partially group-Invariant MDP (PI-MDP), which selectively applies group-invariant or standard Bellman backups depending on where symmetry holds. This framework mitigates error propagation from locally broken symmetries while maintaining the benefits of equivariance, thereby enhancing sample efficiency and generalizability. Building on this framework, we present practical RL algorithms -- Partially Equivariant (PE)-DQN for discrete control and PE-SAC for continuous control -- that combine the benefits of equivariance with robustness to symmetry-breaking. Experiments across Grid-World, locomotion, and manipulation benchmarks demonstrate that PE-DQN and PE-SAC significantly outperform baselines, highlighting the importance of selective symmetry exploitation for robust and sample-efficient RL.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.