Papers
Topics
Authors
Recent
2000 character limit reached

Accelerating Bangla NLP Tasks with Automatic Mixed Precision: Resource-Efficient Training Preserving Model Efficacy (2512.00829v1)

Published 30 Nov 2025 in cs.CL and cs.AI

Abstract: Training models for NLP requires substantial computational resources and time, posing significant challenges, especially for NLP development in Bangla, where access to high-end hardware is often limited. In this work, we explore automatic mixed precision (AMP) training as a means to improve computational efficiency without sacrificing model performance. By leveraging a dynamic mix of 16-bit and 32-bit floating-point computations, AMP lowers GPU memory requirements and speeds up training without degrading model performance. We evaluate AMP across four standard Bangla NLP tasks, namely sentiment analysis, named entity recognition, error classification, and question answering, using four transformer-based models: BanglaBERT, BanglishBERT, XLM-R, and mBERT. Our results demonstrate that AMP accelerates training by 44.5% and reduces memory consumption by 17.6%, while maintaining F-1 score within 99.7% of the full-precision baselines. This empirical study highlights AMP's potential to democratize access to state-of-the-art NLP capabilities in hardware-constrained settings by lowering computational barriers.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.