Papers
Topics
Authors
Recent
2000 character limit reached

Controllable 3D Object Generation with Single Image Prompt (2511.22194v1)

Published 27 Nov 2025 in cs.CV

Abstract: Recently, the impressive generative capabilities of diffusion models have been demonstrated, producing images with remarkable fidelity. Particularly, existing methods for the 3D object generation tasks, which is one of the fastest-growing segments in computer vision, pre-dominantly use text-to-image diffusion models with textual inversion which train a pseudo text prompt to describe the given image. In practice, various text-to-image generative models employ textual inversion to learn concepts or styles of target object in the pseudo text prompt embedding space, thereby generating sophisticated outputs. However, textual inversion requires additional training time and lacks control ability. To tackle this issues, we propose two innovative methods: (1) using an off-the-shelf image adapter that generates 3D objects without textual inversion, offering enhanced control over conditions such as depth, pose, and text. (2) a depth conditioned warmup strategy to enhance 3D consistency. In experimental results, ours show qualitatively and quantitatively comparable performance and improved 3D consistency to the existing text-inversion-based alternatives. Furthermore, we conduct a user study to assess (i) how well results match the input image and (ii) whether 3D consistency is maintained. User study results show that our model outperforms the alternatives, validating the effectiveness of our approaches. Our code is available at GitHub repository:https://github.com/Seooooooogi/Control3D_IP/

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.