Papers
Topics
Authors
Recent
2000 character limit reached

A Layered Protocol Architecture for the Internet of Agents (2511.19699v1)

Published 24 Nov 2025 in cs.NI, cs.AI, and cs.MA

Abstract: LLMs have demonstrated remarkable performance improvements and the ability to learn domain-specific languages (DSLs), including APIs and tool interfaces. This capability has enabled the creation of AI agents that can perform preliminary computations and act through tool calling, now being standardized via protocols like MCP. However, LLMs face fundamental limitations: their context windows cannot grow indefinitely, constraining their memory and computational capacity. Agent collaboration emerges as essential for solving increasingly complex problems, mirroring how computational systems rely on different types of memory to scale. The "Internet of Agents" (IoA) represents the communication stack that enables agents to scale by distributing computation across collaborating entities. Current network architectural stacks (OSI and TCP/IP) were designed for data delivery between hosts and processes, not for agent collaboration with semantic understanding. To address this gap, we propose two new layers: an \textbf{Agent Communication Layer (L8)} and an \textbf{Agent Semantic Negotiation Layer (L9)}. L8 formalizes the \textit{structure} of communication, standardizing message envelopes, speech-act performatives (e.g., REQUEST, INFORM), and interaction patterns (e.g., request-reply, publish-subscribe), building on protocols like MCP. L9, which does not exist today, formalizes the \textit{meaning} of communication, enabling agents to discover, negotiate, and lock a "Shared Context" -- a formal schema defining the concepts, tasks, and parameters relevant to their interaction. Together, these layers provide the foundation for scalable, distributed agent collaboration, enabling the next generation of multi-agentic systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.