Barriers to AI Adoption: Image Concerns at Work
Abstract: Concerns about how workers are perceived can deter effective collaboration with AI. In a field experiment on a large online labor market, I hired 450 U.S.-based remote workers to complete an image-categorization job assisted by AI recommendations. Workers were incentivized by the prospect of a contract extension based on an HR evaluator's feedback. I find that workers adopt AI recommendations at lower rates when their reliance on AI is visible to the evaluator, resulting in a measurable decline in task performance. The effects are present despite a conservative design in which workers know that the evaluator is explicitly instructed to assess expected accuracy on the same AI-assisted task. This reduction in AI reliance persists even when the evaluator is reassured about workers' strong performance history on the platform, underscoring how difficult these concerns are to alleviate. Leveraging the platform's public feedback feature, I introduce a novel incentive-compatible elicitation method showing that workers fear heavy reliance on AI signals a lack of confidence in their own judgment, a trait they view as essential when collaborating with AI.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.