Papers
Topics
Authors
Recent
2000 character limit reached

MASS: Motion-Aware Spatial-Temporal Grounding for Physics Reasoning and Comprehension in Vision-Language Models (2511.18373v1)

Published 23 Nov 2025 in cs.CV

Abstract: Vision LLMs (VLMs) perform well on standard video tasks but struggle with physics-driven reasoning involving motion dynamics and spatial interactions. This limitation reduces their ability to interpret real or AI-generated content (AIGC) videos and to generate physically consistent content. We present an approach that addresses this gap by translating physical-world context cues into interpretable representations aligned with VLMs' perception, comprehension, and reasoning. We introduce MASS-Bench, a comprehensive benchmark consisting of 4,350 real-world and AIGC videos and 8,361 free-form video question-answering pairs focused on physics-related comprehension tasks, with detailed annotations including visual detections, sub-segment grounding, and full-sequence 3D motion tracking of entities. We further present MASS, a model-agnostic method that injects spatial-temporal signals into the VLM language space via depth-based 3D encoding and visual grounding, coupled with a motion tracker for object dynamics. To strengthen cross-modal alignment and reasoning, we apply reinforcement fine-tuning. Experiments and ablations show that our refined VLMs outperform comparable and larger baselines, as well as prior state-of-the-art models, by 8.7% and 6.0%, achieving performance comparable to close-source SoTA VLMs such as Gemini-2.5-Flash on physics reasoning and comprehension. These results validate the effectiveness of our approach.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.