Papers
Topics
Authors
Recent
2000 character limit reached

Revisiting Multimodal KV Cache Compression: A Frequency-Domain-Guided Outlier-KV-Aware Approach

Published 20 Nov 2025 in cs.LG, cs.AI, and cs.CV | (2511.16786v1)

Abstract: Multimodal LLMs suffer from substantial inference overhead since multimodal KV Cache grows proportionally with the visual input length. Existing multimodal KV Cache compression methods mostly rely on attention score to reduce cache size, which makes them are incompatible with established efficient attention kernels (e.g., FlashAttention) and ignores the contribution of value vectors to the attention output. In this work, we revisit multimodal KV Cache compression from the perspective of the KV matrices' distribution. First, we observe that frequency-domain energy of multimodal KV matrices is predominantly concentrated in low-frequency and extract this principal energy via a low-pass filter. Further, we find that removing KV pairs that deviate substantially from this principal energy leads to a pronounced performance drop, which we define as Outlier KVs. Considering Outlier KVs are more likely to encode features critical for inference, we propose FlashCache, a frequency-domain-guided, Outlier-KV-aware KV Cache compression framework. First, we introduce an Outlier KV Recognition Module that models the principal component of multimodal KV matrices in the frequency domain and preferentially retains KV pairs that significantly deviate from it. Furthermore, Dynamic Budget Allocation Module is designed to adaptively determine the per-layer KV Cache size to retain more Outlier KVs. Experiments on multiple MLLMs and benchmarks demonstrate that FlashCache outperforms state-of-the-art multimoal KV compression methods, achieving up to 1.69 times faster decoding with 80% lower KV memory usage while maintaining task performance.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.