Papers
Topics
Authors
Recent
2000 character limit reached

Critical Evaluation of Quantum Machine Learning for Adversarial Robustness

Published 19 Nov 2025 in cs.CR | (2511.14989v1)

Abstract: Quantum Machine Learning (QML) integrates quantum computational principles into learning algorithms, offering improved representational capacity and computational efficiency. Nevertheless, the security and robustness of QML systems remain underexplored, especially under adversarial conditions. In this paper, we present a systematization of adversarial robustness in QML, integrating conceptual organization with empirical evaluation across three threat models-black-box, gray-box, and white-box. We implement representative attacks in each category, including label-flipping for black-box, QUID encoder-level data poisoning for gray-box, and FGSM and PGD for white-box, using Quantum Neural Networks (QNNs) trained on two datasets from distinct domains: MNIST from computer vision and AZ-Class from Android malware, across multiple circuit depths (2, 5, 10, and 50 layers) and two encoding schemes (angle and amplitude). Our evaluation shows that amplitude encoding yields the highest clean accuracy (93% on MNIST and 67% on AZ-Class) in deep, noiseless circuits; however, it degrades sharply under adversarial perturbations and depolarization noise (p=0.01), dropping accuracy below 5%. In contrast, angle encoding, while offering lower representational capacity, remains more stable in shallow, noisy regimes, revealing a trade-off between capacity and robustness. Moreover, the QUID attack attains higher attack success rates, though quantum noise channels disrupt the Hilbert-space correlations it exploits, weakening its impact in image domains. This suggests that noise can act as a natural defense mechanism in Noisy Intermediate-Scale Quantum (NISQ) systems. Overall, our findings guide the development of secure and resilient QML architectures for practical deployment. These insights underscore the importance of designing threat-aware models that remain reliable under real-world noise in NISQ settings.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.