Papers
Topics
Authors
Recent
2000 character limit reached

EVLP:Learning Unified Embodied Vision-Language Planner with Reinforced Supervised Fine-Tuning (2511.05553v1)

Published 3 Nov 2025 in cs.CV and cs.AI

Abstract: In complex embodied long-horizon manipulation tasks, effective task decomposition and execution require synergistic integration of textual logical reasoning and visual-spatial imagination to ensure efficient and accurate operation. Current methods fail to adopt a unified generation framework for multimodal planning, lead to inconsistent in multimodal planning. To address this challenge, we present \textbf{EVLP (Embodied Vision-Language Planner)}, an innovative multimodal unified generation framework that jointly models linguistic reasoning and visual generation. Our approach achieves multimodal planning for long-horizon tasks through a novel training pipeline incorporating dynamic pretraining and reinforced alignment. Our core innovations consist of three key components: \textbf{1) Unified Multimodal Generation Framework}: For understanding, We integrate semantic information with spatial features to provide comprehensive visual perception. For generation, we directly learn the joint distribution of discrete images for one-step visual synthesis, enabling coordinated language-visual modeling through learnable cross-modal attention mechanisms. \textbf{2) Dynamic Perception Pretraining}: We propose a bidirectional dynamic alignment strategy employing inverse dynamics tasks and forward dynamics tasks, effectively strengthening multimodal correlations within a unified feature space. \textbf{3) Reinforced Supervised Fine-Tuning}: While conducting instruction-based fine-tuning in the unified generation space, we construct a reinforce loss to align the spatial logic between textual actions and generated images, enabling the model to acquire spatio-awared multimodal planning capabilities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.