Papers
Topics
Authors
Recent
2000 character limit reached

Emergence from Emergence: Financial Market Simulation via Learning with Heterogeneous Preferences (2511.05207v1)

Published 7 Nov 2025 in cs.CY

Abstract: Agent-based models help explain stock price dynamics as emergent phenomena driven by interacting investors. In this modeling tradition, investor behavior has typically been captured by two distinct mechanisms -- learning and heterogeneous preferences -- which have been explored as separate paradigms in prior studies. However, the impact of their joint modeling on the resulting collective dynamics remains largely unexplored. We develop a multi-agent reinforcement learning framework in which agents endowed with heterogeneous risk aversion, time discounting, and information access collectively learn trading strategies within a unified shared-policy framework. The experiment reveals that (i) learning with heterogeneous preferences drives agents to develop strategies aligned with their individual traits, fostering behavioral differentiation and niche specialization within the market, and (ii) the interactions by the differentiated agents are essential for the emergence of realistic market dynamics such as fat-tailed price fluctuations and volatility clustering. This study presents a constructive paradigm for financial market modeling in which the joint design of heterogeneous preferences and learning mechanisms enables two-stage emergence: individual behavior and the collective market dynamics.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.