How Different Tokenization Algorithms Impact LLMs and Transformer Models for Binary Code Analysis (2511.03825v1)
Abstract: Tokenization is fundamental in assembly code analysis, impacting intrinsic characteristics like vocabulary size, semantic coverage, and extrinsic performance in downstream tasks. Despite its significance, tokenization in the context of assembly code remains an underexplored area. This study aims to address this gap by evaluating the intrinsic properties of NLP tokenization models and parameter choices, such as vocabulary size. We explore preprocessing customization options and pre-tokenization rules tailored to the unique characteristics of assembly code. Additionally, we assess their impact on downstream tasks like function signature prediction -- a critical problem in binary code analysis. To this end, we conduct a thorough study on various tokenization models, systematically analyzing their efficiency in encoding assembly instructions and capturing semantic nuances. Through intrinsic evaluations, we compare tokenizers based on tokenization efficiency, vocabulary compression, and representational fidelity for assembly code. Using state-of-the-art pre-trained models such as the decoder-only LLM Llama 3.2, the encoder-only transformer BERT, and the encoder-decoder model BART, we evaluate the effectiveness of these tokenizers across multiple performance metrics. Preliminary findings indicate that tokenizer choice significantly influences downstream performance, with intrinsic metrics providing partial but incomplete predictability of extrinsic evaluation outcomes. These results reveal complex trade-offs between intrinsic tokenizer properties and their utility in practical assembly code tasks. Ultimately, this study provides valuable insights into optimizing tokenization models for low-level code analysis, contributing to the robustness and scalability of Natural LLM (NLM)-based binary analysis workflows.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.