Papers
Topics
Authors
Recent
2000 character limit reached

HGFreNet: Hop-hybrid GraphFomer for 3D Human Pose Estimation with Trajectory Consistency in Frequency Domain (2511.01756v1)

Published 3 Nov 2025 in cs.CV

Abstract: 2D-to-3D human pose lifting is a fundamental challenge for 3D human pose estimation in monocular video, where graph convolutional networks (GCNs) and attention mechanisms have proven to be inherently suitable for encoding the spatial-temporal correlations of skeletal joints. However, depth ambiguity and errors in 2D pose estimation lead to incoherence in the 3D trajectory. Previous studies have attempted to restrict jitters in the time domain, for instance, by constraining the differences between adjacent frames while neglecting the global spatial-temporal correlations of skeletal joint motion. To tackle this problem, we design HGFreNet, a novel GraphFormer architecture with hop-hybrid feature aggregation and 3D trajectory consistency in the frequency domain. Specifically, we propose a hop-hybrid graph attention (HGA) module and a Transformer encoder to model global joint spatial-temporal correlations. The HGA module groups all $k$-hop neighbors of a skeletal joint into a hybrid group to enlarge the receptive field and applies the attention mechanism to discover the latent correlations of these groups globally. We then exploit global temporal correlations by constraining trajectory consistency in the frequency domain. To provide 3D information for depth inference across frames and maintain coherence over time, a preliminary network is applied to estimate the 3D pose. Extensive experiments were conducted on two standard benchmark datasets: Human3.6M and MPI-INF-3DHP. The results demonstrate that the proposed HGFreNet outperforms state-of-the-art (SOTA) methods in terms of positional accuracy and temporal consistency.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube