Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Progressive Translation of H&E to IHC with Enhanced Structural Fidelity (2511.01698v1)

Published 3 Nov 2025 in cs.CV

Abstract: Compared to hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC) not only maintains the structural features of tissue samples, but also provides high-resolution protein localization, which is essential for aiding in pathology diagnosis. Despite its diagnostic value, IHC remains a costly and labor-intensive technique. Its limited scalability and constraints in multiplexing further hinder widespread adoption, especially in resource-limited settings. Consequently, researchers are increasingly exploring computational stain translation techniques to synthesize IHC-equivalent images from H&E-stained slides, aiming to extract protein-level information more efficiently and cost-effectively. However, most existing stain translation techniques rely on a linearly weighted summation of multiple loss terms within a single objective function, strategy that often overlooks the interdepedence among these components-resulting in suboptimal image quality and an inability to simultaneously preserve structural authenticity and color fidelity. To address this limitation, we propose a novel network architecture that follows a progressive structure, incorporating color and cell border generation logic, which enables each visual aspect to be optimized in a stage-wise and decoupled manner. To validate the effectiveness of our proposed network architecture, we build upon the Adaptive Supervised PatchNCE (ASP) framework as our baseline. We introduce additional loss functions based on 3,3'-diaminobenzidine (DAB) chromogen concentration and image gradient, enhancing color fidelity and cell boundary clarity in the generated IHC images. By reconstructing the generation pipeline using our structure-color-cell boundary progressive mechanism, experiments on HER2 and ER datasets demonstrated that the model significantly improved visual quality and achieved finer structural details.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.