Papers
Topics
Authors
Recent
2000 character limit reached

Bridging the Gap between Empirical Welfare Maximization and Conditional Average Treatment Effect Estimation in Policy Learning (2510.26723v1)

Published 30 Oct 2025 in stat.ML, cs.LG, econ.EM, math.ST, stat.ME, and stat.TH

Abstract: The goal of policy learning is to train a policy function that recommends a treatment given covariates to maximize population welfare. There are two major approaches in policy learning: the empirical welfare maximization (EWM) approach and the plug-in approach. The EWM approach is analogous to a classification problem, where one first builds an estimator of the population welfare, which is a functional of policy functions, and then trains a policy by maximizing the estimated welfare. In contrast, the plug-in approach is based on regression, where one first estimates the conditional average treatment effect (CATE) and then recommends the treatment with the highest estimated outcome. This study bridges the gap between the two approaches by showing that both are based on essentially the same optimization problem. In particular, we prove an exact equivalence between EWM and least squares over a reparameterization of the policy class. As a consequence, the two approaches are interchangeable in several respects and share the same theoretical guarantees under common conditions. Leveraging this equivalence, we propose a novel regularization method for policy learning. Our findings yield a convex and computationally efficient training procedure that avoids the NP-hard combinatorial step typically required in EWM.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.