From Cross-Task Examples to In-Task Prompts: A Graph-Based Pseudo-Labeling Framework for In-context Learning (2510.24528v1)
Abstract: The capability of in-context learning (ICL) enables LLMs to perform novel tasks without parameter updates by conditioning on a few input-output examples. However, collecting high-quality examples for new or challenging tasks can be costly and labor-intensive. In this work, we propose a cost-efficient two-stage pipeline that reduces reliance on LLMs for data labeling. Our approach first leverages readily available cross-task examples to prompt an LLM and pseudo-label a small set of target task instances. We then introduce a graph-based label propagation method that spreads label information to the remaining target examples without additional LLM queries. The resulting fully pseudo-labeled dataset is used to construct in-task demonstrations for ICL. This pipeline combines the flexibility of cross-task supervision with the scalability of LLM-free propagation. Experiments across five tasks demonstrate that our method achieves strong performance while lowering labeling costs.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.