Papers
Topics
Authors
Recent
2000 character limit reached

Human-Level Reasoning: A Comparative Study of Large Language Models on Logical and Abstract Reasoning (2510.24435v1)

Published 28 Oct 2025 in cs.AI

Abstract: Evaluating reasoning ability in LLMs is important for advancing artificial intelligence, as it transcends mere linguistic task performance. It involves understanding whether these models truly understand information, perform inferences, and are able to draw conclusions in a logical and valid way. This study compare logical and abstract reasoning skills of several LLMs - including GPT, Claude, DeepSeek, Gemini, Grok, Llama, Mistral, Perplexity, and Sabi\'a - using a set of eight custom-designed reasoning questions. The LLM results are benchmarked against human performance on the same tasks, revealing significant differences and indicating areas where LLMs struggle with deduction.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.