Papers
Topics
Authors
Recent
2000 character limit reached

Benchmarking Probabilistic Time Series Forecasting Models on Neural Activity (2510.18037v2)

Published 20 Oct 2025 in cs.LG, q-bio.NC, and stat.ML

Abstract: Neural activity forecasting is central to understanding neural systems and enabling closed-loop control. While deep learning has recently advanced the state-of-the-art in the time series forecasting literature, its application to neural activity forecasting remains limited. To bridge this gap, we systematically evaluated eight probabilistic deep learning models, including two foundation models, that have demonstrated strong performance on general forecasting benchmarks. We compared them against four classical statistical models and two baseline methods on spontaneous neural activity recorded from mouse cortex via widefield imaging. Across prediction horizons, several deep learning models consistently outperformed classical approaches, with the best model producing informative forecasts up to 1.5 seconds into the future. Our findings point toward future control applications and open new avenues for probing the intrinsic temporal structure of neural activity.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 5 likes about this paper.