Where, Not What: Compelling Video LLMs to Learn Geometric Causality for 3D-Grounding (2510.17034v1)
Abstract: Multimodal 3D grounding has garnered considerable interest in Vision-LLMs (VLMs) \cite{yin2025spatial} for advancing spatial reasoning in complex environments. However, these models suffer from a severe "2D semantic bias" that arises from over-reliance on 2D image features for coarse localization, largely disregarding 3D geometric inputs and resulting in suboptimal fusion performance. In this paper, we propose a novel training framework called What-Where Representation Re-Forming (W2R2) to tackle this issue via disentangled representation learning and targeted shortcut suppression. Our approach fundamentally reshapes the model's internal space by designating 2D features as semantic beacons for "What" identification and 3D features as spatial anchors for "Where" localization, enabling precise 3D grounding without modifying inference architecture. Key components include a dual-objective loss function with an Alignment Loss that supervises fused predictions using adapted cross-entropy for multimodal synergy, and a Pseudo-Label Loss that penalizes overly effective 2D-dominant pseudo-outputs via a margin-based mechanism. Experiments conducted on ScanRefer and ScanQA demonstrate the effectiveness of W2R2, with significant gains in localization accuracy and robustness, particularly in cluttered outdoor scenes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.