Local regression on path spaces with signature metrics
Abstract: We study nonparametric regression and classification for path-valued data. We introduce a functional Nadaraya-Watson estimator that combines the signature transform from rough path theory with local kernel regression. The signature transform provides a principled way to encode sequential data through iterated integrals, enabling direct comparison of paths in a natural metric space. Our approach leverages signature-induced distances within the classical kernel regression framework, achieving computational efficiency while avoiding the scalability bottlenecks of large-scale kernel matrix operations. We establish finite-sample convergence bounds demonstrating favorable statistical properties of signature-based distances compared to traditional metrics in infinite-dimensional settings. We propose robust signature variants that provide stability against outliers, enhancing practical performance. Applications to both synthetic and real-world data - including stochastic differential equation learning and time series classification - demonstrate competitive accuracy while offering significant computational advantages over existing methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.