Papers
Topics
Authors
Recent
2000 character limit reached

Solving the BGK Model and Boltzmann equation by Fourier Neural Operator with conservative constraints (2510.13047v1)

Published 14 Oct 2025 in math.NA and cs.NA

Abstract: The numerical approximation of the Boltzmann collision operator presents significant challenges arising from its high dimensionality, nonlinear structure, and nonlocal integral form. In this work, we propose a Fourier Neural Operator (FNO) based framework to learn the Boltzmann collision operator and its simplified BGK model across different dimensions. The proposed operator learning approach efficiently captures the mapping between the distribution functions in either sequence-to-sequence or point to point manner, without relying on fine grained discretization and large amount of data. To enhance physical consistency, conservation constraints are embedded into the loss functional to enforce improved adherence to the fundamental conservation laws of mass, momentum, and energy compared with the original FNO framework. Several numerical experiments are presented to demonstrate that the modified FNO can efficiently achieve the accurate and physically consistent results, highlighting its potential as a promising framework for physics constrained operator learning in kinetic theory and other nonlinear integro-differential equations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.