Papers
Topics
Authors
Recent
2000 character limit reached

A Systematic Study on Generating Web Vulnerability Proof-of-Concepts Using Large Language Models (2510.10148v1)

Published 11 Oct 2025 in cs.SE

Abstract: Recent advances in LLMs have brought remarkable progress in code understanding and reasoning, creating new opportunities and raising new concerns for software security. Among many downstream tasks, generating Proof-of-Concept (PoC) exploits plays a central role in vulnerability reproduction, comprehension, and mitigation. While previous research has focused primarily on zero-day exploitation, the growing availability of rich public information accompanying disclosed CVEs leads to a natural question: can LLMs effectively use this information to automatically generate valid PoCs? In this paper, we present the first empirical study of LLM-based PoC generation for web application vulnerabilities, focusing on the practical feasibility of leveraging publicly disclosed information. We evaluate GPT-4o and DeepSeek-R1 on 100 real-world and reproducible CVEs across three stages of vulnerability disclosure: (1) newly disclosed vulnerabilities with only descriptions, (2) 1-day vulnerabilities with patches, and (3) N-day vulnerabilities with full contextual code. Our results show that LLMs can automatically generate working PoCs in 8%-34% of cases using only public data, with DeepSeek-R1 consistently outperforming GPT-4o. Further analysis shows that supplementing code context improves success rates by 17%-20%, with function-level providing 9%-13% improvement than file-level ones. Further integrating adaptive reasoning strategies to prompt refinement significantly improves success rates to 68%-72%. Our findings suggest that LLMs could reshape vulnerability exploitation dynamics. To date, 23 newly generated PoCs have been accepted by NVD and Exploit DB.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.