Papers
Topics
Authors
Recent
2000 character limit reached

Exploring Cross-Client Memorization of Training Data in Large Language Models for Federated Learning

Published 9 Oct 2025 in cs.LG and cs.CL | (2510.08750v1)

Abstract: Federated learning (FL) enables collaborative training without raw data sharing, but still risks training data memorization. Existing FL memorization detection techniques focus on one sample at a time, underestimating more subtle risks of cross-sample memorization. In contrast, recent work on centralized learning (CL) has introduced fine-grained methods to assess memorization across all samples in training data, but these assume centralized access to data and cannot be applied directly to FL. We bridge this gap by proposing a framework that quantifies both intra- and inter-client memorization in FL using fine-grained cross-sample memorization measurement across all clients. Based on this framework, we conduct two studies: (1) measuring subtle memorization across clients and (2) examining key factors that influence memorization, including decoding strategies, prefix length, and FL algorithms. Our findings reveal that FL models do memorize client data, particularly intra-client data, more than inter-client data, with memorization influenced by training and inferencing factors.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.