Papers
Topics
Authors
Recent
2000 character limit reached

Does Physics Knowledge Emerge in Frontier Models? (2510.06251v1)

Published 3 Oct 2025 in cs.CV

Abstract: Leading Vision-LLMs (VLMs) show strong results in visual perception and general reasoning, but their ability to understand and predict physical dynamics remains unclear. We benchmark six frontier VLMs on three physical simulation datasets - CLEVRER, Physion, and Physion++ - where the evaluation tasks test whether a model can predict outcomes or hypothesize about alternative situations. To probe deeper, we design diagnostic subtests that isolate perception (objects, colors, occluders) from physics reasoning (motion prediction, spatial relations). Intuitively, stronger diagnostic performance should support higher evaluation accuracy. Yet our analysis reveals weak correlations: models that excel at perception or physics reasoning do not consistently perform better on predictive or counterfactual evaluation. This counterintuitive gap exposes a central limitation of current VLMs: perceptual and physics skills remain fragmented and fail to combine into causal understanding, underscoring the need for architectures that bind perception and reasoning more tightly.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 3 likes about this paper.

alphaXiv