Papers
Topics
Authors
Recent
2000 character limit reached

Physics-Informed Neural Networks with Fourier Features and Attention-Driven Decoding (2510.05385v1)

Published 6 Oct 2025 in cs.LG and physics.comp-ph

Abstract: Physics-Informed Neural Networks (PINNs) are a useful framework for approximating partial differential equation solutions using deep learning methods. In this paper, we propose a principled redesign of the PINNsformer, a Transformer-based PINN architecture. We present the Spectral PINNSformer (S-Pformer), a refinement of encoder-decoder PINNSformers that addresses two key issues; 1. the redundancy (i.e. increased parameter count) of the encoder, and 2. the mitigation of spectral bias. We find that the encoder is unnecessary for capturing spatiotemporal correlations when relying solely on self-attention, thereby reducing parameter count. Further, we integrate Fourier feature embeddings to explicitly mitigate spectral bias, enabling adaptive encoding of multiscale behaviors in the frequency domain. Our model outperforms encoder-decoder PINNSformer architectures across all benchmarks, achieving or outperforming MLP performance while reducing parameter count significantly.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: