Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Where Did It All Go Wrong? A Hierarchical Look into Multi-Agent Error Attribution (2510.04886v1)

Published 6 Oct 2025 in cs.AI and cs.MA

Abstract: Error attribution in LLM multi-agent systems presents a significant challenge in debugging and improving collaborative AI systems. Current approaches to pinpointing agent and step level failures in interaction traces - whether using all-at-once evaluation, step-by-step analysis, or binary search - fall short when analyzing complex patterns, struggling with both accuracy and consistency. We present ECHO (Error attribution through Contextual Hierarchy and Objective consensus analysis), a novel algorithm that combines hierarchical context representation, objective analysis-based evaluation, and consensus voting to improve error attribution accuracy. Our approach leverages a positional-based leveling of contextual understanding while maintaining objective evaluation criteria, ultimately reaching conclusions through a consensus mechanism. Experimental results demonstrate that ECHO outperforms existing methods across various multi-agent interaction scenarios, showing particular strength in cases involving subtle reasoning errors and complex interdependencies. Our findings suggest that leveraging these concepts of structured, hierarchical context representation combined with consensus-based objective decision-making, provides a more robust framework for error attribution in multi-agent systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.