Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Computation from Fluctuation Responses (2510.03900v1)

Published 4 Oct 2025 in cond-mat.stat-mech and cs.LG

Abstract: The energy cost of computation has emerged as a central challenge at the intersection of physics and computer science. Recent advances in statistical physics -- particularly in stochastic thermodynamics -- enable precise characterizations of work, heat, and entropy production in information-processing systems driven far from equilibrium by time-dependent control protocols. A key open question is then how to design protocols that minimize thermodynamic cost while ensur- ing correct outcomes. To this end, we develop a unified framework to identify optimal protocols using fluctuation response relations (FRR) and machine learning. Unlike previous approaches that optimize either distributions or protocols separately, our method unifies both using FRR-derived gradients. Moreover, our method is based primarily on iteratively learning from sampled noisy trajectories, which is generally much easier than solving for the optimal protocol directly from a set of governing equations. We apply the framework to canonical examples -- bit erasure in a double-well potential and translating harmonic traps -- demonstrating how to construct loss functions that trade-off energy cost against task error. The framework extends trivially to underdamped systems, and we show this by optimizing a bit-flip in an underdamped system. In all computations we test, the framework achieves the theoretically optimal protocol or achieves work costs comparable to relevant finite time bounds. In short, the results provide principled strategies for designing thermodynamically efficient protocols in physical information-processing systems. Applications range from quantum gates robust under noise to energy-efficient control of chemical and synthetic biological networks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.