Papers
Topics
Authors
Recent
2000 character limit reached

TART: A Comprehensive Tool for Technique-Aware Audio-to-Tab Guitar Transcription

Published 2 Oct 2025 in cs.SD | (2510.02597v1)

Abstract: Automatic Music Transcription (AMT) has advanced significantly for the piano, but transcription for the guitar remains limited due to several key challenges. Existing systems fail to detect and annotate expressive techniques (e.g., slides, bends, percussive hits) and incorrectly map notes to the wrong string and fret combination in the generated tablature. Furthermore, prior models are typically trained on small, isolated datasets, limiting their generalizability to real-world guitar recordings. To overcome these limitations, we propose a four-stage end-to-end pipeline that produces detailed guitar tablature directly from audio. Our system consists of (1) Audio-to-MIDI pitch conversion through a piano transcription model adapted to guitar datasets; (2) MLP-based expressive technique classification; (3) Transformer-based string and fret assignment; and (4) LSTM-based tablature generation. To the best of our knowledge, this framework is the first to generate detailed tablature with accurate fingerings and expressive labels from guitar audio.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.