Evaluating Uncertainty Quantification Methods in Argumentative Large Language Models (2510.02339v1)
Abstract: Research in uncertainty quantification (UQ) for LLMs is increasingly important towards guaranteeing the reliability of this groundbreaking technology. We explore the integration of LLM UQ methods in argumentative LLMs (ArgLLMs), an explainable LLM framework for decision-making based on computational argumentation in which UQ plays a critical role. We conduct experiments to evaluate ArgLLMs' performance on claim verification tasks when using different LLM UQ methods, inherently performing an assessment of the UQ methods' effectiveness. Moreover, the experimental procedure itself is a novel way of evaluating the effectiveness of UQ methods, especially when intricate and potentially contentious statements are present. Our results demonstrate that, despite its simplicity, direct prompting is an effective UQ strategy in ArgLLMs, outperforming considerably more complex approaches.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.