Papers
Topics
Authors
Recent
2000 character limit reached

StreamForest: Efficient Online Video Understanding with Persistent Event Memory (2509.24871v1)

Published 29 Sep 2025 in cs.CV

Abstract: Multimodal LLMs (MLLMs) have recently achieved remarkable progress in video understanding. However, their effectiveness in real-time streaming scenarios remains limited due to storage constraints of historical visual features and insufficient real-time spatiotemporal reasoning. To address these challenges, we propose StreamForest, a novel architecture specifically designed for streaming video understanding. Central to StreamForest is the Persistent Event Memory Forest, a memory mechanism that adaptively organizes video frames into multiple event-level tree structures. This process is guided by penalty functions based on temporal distance, content similarity, and merge frequency, enabling efficient long-term memory retention under limited computational resources. To enhance real-time perception, we introduce a Fine-grained Spatiotemporal Window, which captures detailed short-term visual cues to improve current scene perception. Additionally, we present OnlineIT, an instruction-tuning dataset tailored for streaming video tasks. OnlineIT significantly boosts MLLM performance in both real-time perception and future prediction. To evaluate generalization in practical applications, we introduce ODV-Bench, a new benchmark focused on real-time streaming video understanding in autonomous driving scenarios. Experimental results demonstrate that StreamForest achieves the state-of-the-art performance, with accuracies of 77.3% on StreamingBench, 60.5% on OVBench, and 55.6% on OVO-Bench. In particular, even under extreme visual token compression (limited to 1024 tokens), the model retains 96.8% of its average accuracy in eight benchmarks relative to the default setting. These results underscore the robustness, efficiency, and generalizability of StreamForest for streaming video understanding.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.