Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

UI2V-Bench: An Understanding-based Image-to-video Generation Benchmark (2509.24427v1)

Published 29 Sep 2025 in cs.CV

Abstract: Generative diffusion models are developing rapidly and attracting increasing attention due to their wide range of applications. Image-to-Video (I2V) generation has become a major focus in the field of video synthesis. However, existing evaluation benchmarks primarily focus on aspects such as video quality and temporal consistency, while largely overlooking the model's ability to understand the semantics of specific subjects in the input image or to ensure that the generated video aligns with physical laws and human commonsense. To address this gap, we propose UI2V-Bench, a novel benchmark for evaluating I2V models with a focus on semantic understanding and reasoning. It introduces four primary evaluation dimensions: spatial understanding, attribute binding, category understanding, and reasoning. To assess these dimensions, we design two evaluation methods based on Multimodal LLMs (MLLMs): an instance-level pipeline for fine-grained semantic understanding, and a feedback-based reasoning pipeline that enables step-by-step causal assessment for more accurate evaluation. UI2V-Bench includes approximately 500 carefully constructed text-image pairs and evaluates a range of both open source and closed-source I2V models across all defined dimensions. We further incorporate human evaluations, which show strong alignment with the proposed MLLM-based metrics. Overall, UI2V-Bench fills a critical gap in I2V evaluation by emphasizing semantic comprehension and reasoning ability, offering a robust framework and dataset to support future research and model development in the field.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.