Papers
Topics
Authors
Recent
2000 character limit reached

DA-MMP: Learning Coordinated and Accurate Throwing with Dynamics-Aware Motion Manifold Primitives (2509.23721v1)

Published 28 Sep 2025 in cs.RO

Abstract: Dynamic manipulation is a key capability for advancing robot performance, enabling skills such as tossing. While recent learning-based approaches have pushed the field forward, most methods still rely on manually designed action parameterizations, limiting their ability to produce the highly coordinated motions required in complex tasks. Motion planning can generate feasible trajectories, but the dynamics gap-stemming from control inaccuracies, contact uncertainties, and aerodynamic effects-often causes large deviations between planned and executed trajectories. In this work, we propose Dynamics-Aware Motion Manifold Primitives (DA-MMP), a motion generation framework for goal-conditioned dynamic manipulation, and instantiate it on a challenging real-world ring-tossing task. Our approach extends motion manifold primitives to variable-length trajectories through a compact parametrization and learns a high-quality manifold from a large-scale dataset of planned motions. Building on this manifold, a conditional flow matching model is trained in the latent space with a small set of real-world trials, enabling the generation of throwing trajectories that account for execution dynamics. Experiments show that our method can generate coordinated and smooth motion trajectories for the ring-tossing task. In real-world evaluations, it achieves high success rates and even surpasses the performance of trained human experts. Moreover, it generalizes to novel targets beyond the training range, indicating that it successfully learns the underlying trajectory-dynamics mapping.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.