Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Multi-Skill Legged Locomotion Using Conditional Adversarial Motion Priors

Published 26 Sep 2025 in cs.RO | (2509.21810v1)

Abstract: Despite growing interest in developing legged robots that emulate biological locomotion for agile navigation of complex environments, acquiring a diverse repertoire of skills remains a fundamental challenge in robotics. Existing methods can learn motion behaviors from expert data, but they often fail to acquire multiple locomotion skills through a single policy and lack smooth skill transitions. We propose a multi-skill learning framework based on Conditional Adversarial Motion Priors (CAMP), with the aim of enabling quadruped robots to efficiently acquire a diverse set of locomotion skills from expert demonstrations. Precise skill reconstruction is achieved through a novel skill discriminator and skill-conditioned reward design. The overall framework supports the active control and reuse of multiple skills, providing a practical solution for learning generalizable policies in complex environments.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.