Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

VLBiMan: Vision-Language Anchored One-Shot Demonstration Enables Generalizable Robotic Bimanual Manipulation (2509.21723v1)

Published 26 Sep 2025 in cs.RO

Abstract: Achieving generalizable bimanual manipulation requires systems that can learn efficiently from minimal human input while adapting to real-world uncertainties and diverse embodiments. Existing approaches face a dilemma: imitation policy learning demands extensive demonstrations to cover task variations, while modular methods often lack flexibility in dynamic scenes. We introduce VLBiMan, a framework that derives reusable skills from a single human example through task-aware decomposition, preserving invariant primitives as anchors while dynamically adapting adjustable components via vision-language grounding. This adaptation mechanism resolves scene ambiguities caused by background changes, object repositioning, or visual clutter without policy retraining, leveraging semantic parsing and geometric feasibility constraints. Moreover, the system inherits human-like hybrid control capabilities, enabling mixed synchronous and asynchronous use of both arms. Extensive experiments validate VLBiMan across tool-use and multi-object tasks, demonstrating: (1) a drastic reduction in demonstration requirements compared to imitation baselines, (2) compositional generalization through atomic skill splicing for long-horizon tasks, (3) robustness to novel but semantically similar objects and external disturbances, and (4) strong cross-embodiment transfer, showing that skills learned from human demonstrations can be instantiated on different robotic platforms without retraining. By bridging human priors with vision-language anchored adaptation, our work takes a step toward practical and versatile dual-arm manipulation in unstructured settings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.