Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Approach to Checking Correctness for Agentic Systems (2509.20364v1)

Published 19 Aug 2025 in cs.AI and cs.ET

Abstract: This paper presents a temporal expression language for monitoring AI agent behavior, enabling systematic error-detection of LLM-based agentic systems that exhibit variable outputs due to stochastic generation processes. Drawing from temporal logic techniques used in hardware verification, this approach monitors execution traces of agent tool calls and state transitions to detect deviations from expected behavioral patterns. Current error-detection approaches rely primarily on text matching of inputs and outputs, which proves fragile due to the natural language variability inherent in LLM responses. The proposed method instead focuses on the sequence of agent actions -- such as tool invocations and inter-agent communications -- allowing verification of system behavior independent of specific textual outputs. The temporal expression language provides assertions that capture correct behavioral patterns across multiple execution scenarios. These assertions serve dual purposes: validating prompt engineering and guardrail effectiveness during development, and providing regression testing when agents are updated with new LLMs or modified logic. The approach is demonstrated using a three-agent system, where agents coordinate to solve multi-step reasoning tasks. When powered by large, capable models, all temporal assertions were satisfied across many test runs. However, when smaller models were substituted in two of the three agents, executions violated behavioral assertions, primarily due to improper tool sequencing and failed coordination handoffs. The temporal expressions successfully flagged these anomalies, demonstrating the method's effectiveness for detecting behavioral regressions in production agentic systems. This approach provides a foundation for systematic monitoring of AI agent reliability as these systems become increasingly deployed in critical applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: