Papers
Topics
Authors
Recent
Search
2000 character limit reached

Benchmarking and Improving LLM Robustness for Personalized Generation

Published 18 Sep 2025 in cs.CL and cs.AI | (2509.19358v1)

Abstract: Recent years have witnessed a growing interest in personalizing the responses of LLMs. While existing evaluations primarily focus on whether a response aligns with a user's preferences, we argue that factuality is an equally important yet often overlooked dimension. In the context of personalization, we define a model as robust if its responses are both factually accurate and align with the user preferences. To assess this, we introduce PERG, a scalable framework for evaluating robustness in LLMs, along with a new dataset, PERGData. We evaluate fourteen models from five different model families using different prompting methods. Our findings show that current LLMs struggle with robust personalization: even the strongest models (GPT-4.1, LLaMA3-70B) fail to maintain correctness in 5% of previously successful cases without personalization, while smaller models (e.g., 7B-scale) can fail more than 20% of the time. Further analysis reveals that robustness is significantly affected by the nature of the query and the type of user preference. To mitigate these failures, we propose Pref-Aligner, a two-stage approach that improves robustness by an average of 25% across models. Our work highlights critical gaps in current evaluation practices and introduces tools and metrics to support more reliable, user-aligned LLM deployments.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 10 tweets with 17 likes about this paper.