Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Simulating Online Social Media Conversations on Controversial Topics Using AI Agents Calibrated on Real-World Data (2509.18985v1)

Published 23 Sep 2025 in cs.SI

Abstract: Online social networks offer a valuable lens to analyze both individual and collective phenomena. Researchers often use simulators to explore controlled scenarios, and the integration of LLMs makes these simulations more realistic by enabling agents to understand and generate natural language content. In this work, we investigate the behavior of LLM-based agents in a simulated microblogging social network. We initialize agents with realistic profiles calibrated on real-world online conversations from the 2022 Italian political election and extend an existing simulator by introducing mechanisms for opinion modeling. We examine how LLM agents simulate online conversations, interact with others, and evolve their opinions under different scenarios. Our results show that LLM agents generate coherent content, form connections, and build a realistic social network structure. However, their generated content displays less heterogeneity in tone and toxicity compared to real data. We also find that LLM-based opinion dynamics evolve over time in ways similar to traditional mathematical models. Varying parameter configurations produces no significant changes, indicating that simulations require more careful cognitive modeling at initialization to replicate human behavior more faithfully. Overall, we demonstrate the potential of LLMs for simulating user behavior in social environments, while also identifying key challenges in capturing heterogeneity and complex dynamics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.